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Abstract

Marine ecosystems reflect the physical structure of their environment and the biological
processes they carry out. This leads to spatial heterogeneity and temporal variability, some
of which is imposed externally and some of which emerges from the ecological mecha-
nisms themselves. The main focus of this thesis is on the formation of spatial patterns in
the distribution of zooplankton arising from social interactions between individuals. In the
Southern Ocean, krill often assemble in swarms and schools, the dynamics of which have
important ecological consequences. Mathematical and numerical models are employed
to study the interplay of biological and physical processes that contribute to the observed
patchiness.

The evolution of social behavior is simulated in a theoretical framework that includes
zooplankton population dynamics, swimming behavior, and some aspects of the variabil-
ity inherent to fluid environments. First, I formulate a model of resource utilization by
a stage-structured predator population with density-dependent reproduction. Second, I in-
corporate the predator-prey dynamics into a spatially-explicit model, in which aggregations
develop spontaneously as a result of linear instability of the uniform distribution. In this
idealized ecosystem, benefits related to the local abundance of mates are offset by the cost
of having to share resources with other group members. Third, I derive a weakly non-
linear approximation for the steady-state distributions of predator and prey biomass that
captures the spatial patterns driven by social tendencies. Fourth, I simulate the schooling
behavior of zooplankton in a variable environment; when turbulent flows generate patch-
iness in the resource field, schools can forage more efficiently than individuals. Taken
together, these chapters demonstrate that aggregation/ schooling can indeed be the favored
behavior when (i) reproduction (or other survival measures) increases with density in part
of the range and (ii) mixing of prey into patches is rapid enough to offset the depletion.
In the final two chapters, I consider sources of temporal variability in marine ecosystems.
External perturbations amplified by nonlinear ecological interactions induce transient ex-



cursions away from equilibrium; in predator-prey dynamics the amplitude and duration of
these transients are controlled by biological processes such as growth and mortality. In the
Southern Ocean, large-scale winds associated with ENSO and the Southern Annular Mode
cause convective mixing, which in turn drives air-sea fluxes of carbon dioxide and oxygen.
Whether driven by stochastic fluctuations or by climatic phenomena, variability of the bio-
geochemical/physical environment has implications for ecosystem dynamics.

Thesis Supervisor: Glenn R. Flierl
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Introduction

This thesis is about the structure and dynamics of marine ecosystems. Photosynthesis in
the ocean provides energy to sustain a diverse and abundant fauna, which is assembled
into communities of multiple species interacting with each other and with their environ-
ment. The interplay of ecological and physical processes has important consequences for
the evolution of communities. Some of these processes, such as individual behavior and
predator-prey interactions, can be best expressed as mathematical equations. Theoretical
frameworks can thus be used to represent idealized marine ecosystems. The main advan-
tage of this approach is that it offers the possibility to perform quantitative analyses and to

strip out most of the system’s complexity in order to focus on key mechanisms.

Zooplankton patchiness

Zooplankton occupy an important position in oceanic food webs. By filling the size gap
between the phytoplankton and animals that are too large to prey directly on microscopic
algae, they provide a crucial link for energy transfer toward higher trophic levels. The
spatial distribution of zooplankton is observed to be highly variable (e.g. Mackas and Boyd,
1979); the patchiness is produced in part by the environmental variability and in part by
the ecological dynamics (Levin, 1992). Because of their small size, planktonic organisms
have a limited ability to swim against currents, allowing their distribution to be strongly
influenced by ocean circulation patterns. At small scales and mesoscales, turbulent motions
generate patchiness (e.g. Flierl and McGillicuddy, 2002; Abraham, 1998). Clustering can

also result from the actions and interactions of individuals (Levin, 1994; Young et al.,
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2001). In particular, social behavior is responsible for the formation of dense aggregations
in swimming organisms. These spatial patterns have significant effects on the structure and
function of ecosystems (Steele, 1974; Hobson, 1989; Bracco et al., 2000; Brentnall et al.,
2003; Martin et al., 2002; Martin, 2003).

Social behavior refers to the tendency of individuals to move toward their conspecifics,
which results in the formation of social groups. The behavior is observed in many kinds
of animals, including larger species of zooplankton such as euphausiids (Mauchline, 1980;
Folt and Burns, 1999; Hamner and Hamner, 2000). Also known as “krill”, euphausiids are
shrimp-like crustaceans found in pelagic waters throughout the world’s oceans. Antarctic
krill (Euphausia superba) is a notable example of zooplankton with social behavior. So-
cial aggregations of krill (called swarms or schools) can be very dense, with up to 10, 000
individuals per cubic meter, and extend horizontally for several kilometers (e.g. Miller and
Hampton, 1989; Hewitt and Demer, 1993). As a source of food for whales, seals, penguins,
and other large predators, krill plays a central role in the Southern Ocean food web. Its eco-
logical relevance has motivated numerous studies, both in situ and in laboratory settings, of
the ecology and physiology of Antarctic krill. While these studies have contributed signif-
icantly to understanding the species as well as the local ecosystem, the question remains:

why has social behavior evolved so strongly in krill?

Distribution and behavior of Antarctic krill

Observations of the density distribution of krill in the Southern Ocean consistently show
high levels of variability at a wide range of spatial scales. Non-random aggregations, which
result not by chance but from biological and/or physical processes, occur throughout the
year and over the whole geographical range of Antarctic krill. Hydroacoustic measure-
ments have proven particularly useful for estimating the morphology, internal structure,
and vertical position of such aggregations (Lawson, 2006). The smallest swarms have
typical lengths of tens of meters and densities often exceeding 100 g/m® (Kalinowski and

Witek, 1985; Miller and Hampton, 1989). Aggregations tend to be larger, denser and

12



deeper during daytime than during the night (Lawson, 2006); swarms can reach densities
of 1000 g/m? and horizontal scales of a few kilometers (Hamner et al., 1983; Kalinowski

and Witek, 1985; Miller and Hampton, 1989).

Variance spectra reveal that there is significantly more fine-scale structure in krill den-
sity than in temperature or phytoplankton in the Southern Ocean (Figure 0-1). At scales of
approximately 100 km, all spectra have the same slope, which suggests that ocean circula-
tion controls the large-scale distribution of the three tracers. At small scales, however, the
spectrum of krill is flatter than the others; this implies that environmental variability is not
the only factor generating patchiness in the density-distribution of krill, and that a different
mechanism must explain the small-scale patterns (Levin, 1992). The scale at which the
transition occurs is consistent with the observed length of krill swarms (< 10 km). The in-
terpretation of these data is that social behavior is the main driver of small-scale variability

in the density-distribution of krill.

The processes involved in the generation and maintenance of swarms can be investi-
gated using a combination of data and models. Existing models of social aggregation in
krill are either formulated as reaction-advection-diffusion equations (e.g. Flierl et al., 1999)
or they are individual-based models (e.g. Flierl et al., 1999; Hofmann et al., 2004). Obser-
vational and experimental data is used to constrain the parameter values in these models.
Theory predicts that the size of social aggregations in zooplankton depends primarily on
the swimming speed, the distance at which individuals can sense their neighbors, and the
rate at which they are diffused (Flierl et al., 1999). Some of these parameters can be mea-
sured directly (the swimming velocity) or indirectly (the sensing radius), while others are

poorly constrained (the diffusivity).

Despite their relatively small size, Antarctic krill are strong swimmers: adults can main-
tain cruising speeds of 0.08 — 0.15 m/s (Kils, 1982), which corresponds to roughly two
body lengths per second. It is believed that individuals use visual methods to detect each
other (Strand and Hamner, 1990). The distance at which individuals can respond to neigh-

bors is difficult to measure, but can be estimated from the distance at which they avoid nets
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Figure 0-1: Fourier spectra of the spatial distributions of temperature, fluorescence, and
krill biomass in the Southern Ocean. Spatial scale increases from the right to the left.
Temperature is an indicator of water movements; fluorescence is a proxy for phytoplankton
activity. From Weber (1986), reproduced in Levin (1992).



or divers, from the morphology of their eye compound, or from model sensitivities. These
methods yield maximum sensing distances of 0.2 m (Hofmann et al., 2004) to about 1 m
(Lawson, 2006).

The tendency to swim toward neighbors that are within sensing range is, however, coun-
terbalanced by the homogenizing effect of diffusion. Zooplankton individuals tend to dis-
perse as a result of randomness in the swimming movements and of the turbulent mixing
resulting from small-scale ocean circulation patterns. Social aggregations can only form if
the attraction tendency is greater than the effective diffusion (e.g. Okubo, 1986). Diffusiv-
ity, especially the movement-related component, is difficult to measure; this parameter is
often adjusted in models so that self-organized aggregations can develop. When realistic
values for krill behavior are used, simulated social aggregations have spatial scales of 10 m
or less (Hofmann et al., 2004). These correspond to the smallest of observed swarms. The
mechanisms though which swarms assemble into larger scale patterns are not known, but

perhaps involve using the variability of the flow at different scales.

Why is social behavior a successful strategy?

Several hypotheses have been proposed to explain why social behavior has evolved in eu-
phausiids. Benefits gained by aggregating include a higher probability of mating, improved
foraging success, and reduced predation risk. Some of these ideas are supported by obser-
vational evidence. In the species Nyctiphanes australis, swarming is seasonal and linked to
breeding (Blackburn, 1980; O’Brien, 1988), suggesting that organisms aggregate in order
to find mates. In the Southern Ocean, schools of Antarctic krill are observed to disperse
rapidly when approached by underwater vehicles (Hamner et al., 1983; O’Brien, 1987),
which is thought to be a strategy for escaping predator attacks by confusing the predator.
Ritz (2000) has speculated that the hydrodynamics in schools might optimize the capture
rate of suspended prey. Modeling studies also suggest that collective motions can improve
ability to forage in a noisy resource field (Griinbaum, 1998; Wood and Ackland, 2006).

There are also negative effects associated with the social behavior. An obvious cost is
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that available resources are shared with other group members. When in aggregations, krill
are also more vulnerable to large predators that have evolved efficient strategies to detect
and exploit groups (Nicol and O’Dor, 1985; Ritz, 1994): in the St-Laurent estuary, for
example, mammals are attracted by aggregations of krill (Sourisseau et al.; de Lafontaine
et al., 1991; Kingsley and Reeves, 1998) which might be induced by tidal currents (Cotté
and Simard, 2005); krill densities are generally high and patchy in regions where whales
are observed (Simard and Lavoie, 1999). In addition, dense aggregations favor the spread

of infectious diseases which can lead to mass mortality in krill (Gémez-Gutiérrez et al.,

2003).

These ideas can be put into mathematical form to quantify the costs and benefits of
social behavior and relatedly to address the question of why it has evolved so strongly
in krill. Numerical simulations provide powerful tools for studying spatial ecosystems

involving multiple interacting species with their distribution constantly changing in time.

Overview of thesis

To investigate the mechanisms and consequences of zooplankton patchiness, I develop and
use numerical models that include swimming behavior, population dynamics, and some as-
pects of environmental variability. First, I examine the density-dependence of reproductive
success as a driver for the evolution of social behavior. The benefit associated with the
proximity of mates trades off with the cost of intra-specific competition for resources. In
Chapter 1, I formulate a model that accounts for these two effects. The stage-structured
consumer-resource model includes a mating probability for the consumer, which is as-
sumed to be a saturating function of the local density of mature conspecifics. In Chapters
2 and 3, I consider a spatial version of that ecosystem model to simulate the formation of
social groups. The model is written as a set of reaction-advection-diffusion equations for
the density of phytoplankton and krill. The advection term represents swimming behav-

ior of the predator; a simple behavior rule produces aggregations. Chapter 2 addresses
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the success of the grouping strategy under different environmental conditions. The spa-
tial distribution of zooplankton influences their ability to eat and to reproduce; whether
aggregation behavior is overall a successful strategy depends on the balance of the costs
and benefits. Chapter 3 focuses on the asymptotic dynamics of the patchy ecosystem in
the absence of environmental variability. The steady-state density-distribution is solved
numerically and compared to the solution obtained analytically from the weakly-nonlinear
approximation to the model. In Chapter 4, I investigate the foraging success of a school-
ing population. To this end, I construct an individual-based model for krill coupled to a
continuous-field physical-ecological model that simulates the variability, in time and space,
of the resource. The next chapters examine other external mechanisms that induce spatial
and temporal variability in marine ecosystems. In Chapter 5, I analyze the transient re-
sponse of consumer-resource models to external perturbations. In Chapter 6, I describe the
biogeochemical variability in the Southern Ocean induced by large-scale climatic patterns.

The main findings of each chapter are summarized in Chapter 7.
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Chapter 1

Predator-prey dynamics with
density-dependent mating success

Abstract

An Allee effect arising from density-dependent mating success is incorporated into
mathematical models of predator-prey interactions. When the predator’s life cycle
is formulated as a two-stage model and coupled to a logistically-growing resource,
reproduction and recruitment can be expressed as a transfer of biomass from the
prey to the predator. The mating probability modulates the rate at which offsprings
are produced, thus effectively reducing the predation rate in the model. The im-
plications of nonlinearity in the mating function for predator-prey dynamics are
investigated. Examination of the fixed points and bifurcations in the model reveals
that enhancing the Allee effect can destabilize a locally stable equilibrium, stabilize
oscillating dynamics, or cause catastrophic extinction of the predator population.
The stage-structured model is compared to a model with a continuous weight dis-
tribution; if the birth and growth rates are assumed to have a power-law dependence
on weight, the continuous model reduces to a set of ordinary differential equations
that behaves similarly to the discrete-stage predator-prey model with Allee effect.
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1.1 Introduction: Allee effects

When individual fitness is positively correlated with the density of conspecifics, the pop-
ulation growth rate increases with population size. This correlation is referred to as the
“Allee effect” (after ecologist W.C. Allee) and is often cited as a possible cause of animal
extinctions. In sexually-reproducing species, Allee effects arise from density-dependence
of the mating success, the probability of encounters between potential mates being propor-
tional to the local number of individuals (Dennis, 1989; McCarthy, 1997; Courchamp et al.,
1999). Behaviors that induce local density enhancement, such as the formation of social
groups, might have evolved because of their positive impact on the per capita reproduction

rate (Stephens and Sutherland, 1999).

Allee effects can be incorporated into single-species population models by simply mul-
tiplying the reproduction function by the probability of successful mating (Boukal and
Berec, 2002). The density-dependence affects the population dynamics (e.g. Scheuring,
1999; Schreiber, 2003). Multi-species and spatial models with Allee effects also reveal sig-
nificant implications for predatory interactions (Kent et al., 2003; Webb, 2003; Zhou et al.,

2005) and biological invasions (e.g. Lewis and Kareiva, 1993; Taylor and Hastings, 2005).

Here I investigate the effects of density-dependent reproduction on the dynamics of
predator-prey models. A classical formulation for predator-prey interaction is the Rosen-

zweig and MacArthur (1963) model,

dP !
P rp(1_?>—G<P>Z (1.1)
2 - wpz-az (1.2)

where P is the prey population and Z the predator population. It can be employed to de-
scribe the dynamics of planktonic ecosystems, in which case the prey represents a primary

producer (phytoplankton) and the predator is an herbivore (zooplankton).

The functional response, which reflects the saturation of predation rate when resources
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are abundant, is expressed as a Holling-Type II function, G(P) = gp—fﬁ, where g is the
maximum predation rate and P, is the half-saturation prey density; € is the assimilation
efficiency, and d is the mortality rate. The model assumes logistic growth for the prey, with
r the maximum growth rate and K the carrying capacity. Dynamics of systems of the form
(1.1-1.2) have been thoroughly investigated (e.g. May, 1972; Gilpin, 1972; Myerscough
et al., 1996; Kot, 2001). The basic structure of the model has also been adapted to take
into account spatial heterogeneity, higher-order trophic levels, etc. To include Allee effects
in the predator population, Bazykin (1998; reproduced in Webb, 2003) and Zhou et al.
(200S) multiply the predator growth term in (1.2) by the density-dependent probability of

reproducing (see Section 1.4.3).

A different approach is adopted here for constructing predator-prey models with non-
linear life cycle processes. In a structured population model, reproduction and growth can
be viewed as processes generating biomass. This view is emphasized by associating de-
velopmental stages with individual weight, so that organisms changing stage experience
changes in their weight. Both discrete and continuous formulations are considered for the
population structure. The simplest model has two discrete stages, corresponding to juvenile
and adult organisms, which are born and recruited in continuous time. Knowing how much
mass is gained by the predator population in a given time interval, it is possible to infer
how much resources must have been consumed to produce it; that information is then used
to formulate an equation for the population dynamics of the prey. This contrasts with the
more conventional approach, which decouples developmental activities and inter-specific
interactions (see e.g. Gurney and Nisbet, 1998); it provides a new way of constructing

multi-species ecological models.

The chapter begins with a description of the discrete-stage predator-prey model in Sec-
tion 1.2. Stability of the model equilibria is examined in Section 1.3. In Section 1.4, an
equivalent standard predator-prey model is derived by reformulating the structured model
in terms of a single-stage predator population; differences with other published models that

include the Allee effect only in the equation for the predator are highlighted. In Section 1.5,
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it is shown that consistent results are obtained when a continuous-weight model is used to
describe the dynamics of the predator population. Results are briefly discussed in Section

1.6.

1.2 Stage-structured model

Consider a stage-structured population for the predator, with a life cycle consisting of ju-
venile and adult stages. The life cycle is represented schematically in Figure 1-1: birth
of new individuals supplies the juvenile stage, during which organisms develop; if they
survive, they are recruited into the adult stage, where they reproduce and eventually die.
Reproduction and maturation are assumed to be food-dependent processes, so that birth
and recruitment rates are limited by the availability of resources. The birth rate can also be

a function of adult density; the mortality rate is assumed to be constant.

Mathematically, this is expressed as

% = B(P Na)Na - Q(P)NJ - dj]Vj (]3)
dg"' = Q(P)N; — du.N, (1.4)

where N is the number of individuals, with subscripts j and a referring to the juvenile and
adult stages, respectively; P is the prey density, B is the birth rate, () the recruitment rate,

and d the mortality rate.

When thinking about resource consumption, it is useful to convert the number of in-
dividuals into predator biomass. If individuals in the juvenile and adult stages have an

average weight of w; and w,, respectively, with the total biomass given by Z = wN, we
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write

dz; w;j
dt] - ’wZB(Pv Za)Za - Q(P)Z] - dej (1.5)
dZ, Wq

= —Q(P)Z;—-d,Z, 1%
i QP - dZ (1.6

From the equations above it is evident that the increase of adult biomass through recruit-
ment exceeds the amount of biomass removed from the juvenile stage, the ratio w,/w; be-
ing greater than 1: in the discrete-stage formulation, recruitment implies a sudden weight
gain. Similarly, newborn individuals acquire a finite mass. Assuming that this new biomass
is taken out of the prey population, as illustrated in Figure 1-1, and that the transfer has ef-
ficiency e, the equation for the resource is

B = (1 - g) - [7—1’13(12 Z2)Z0 + (“’—“_ = 1) Q(P)ZJ} (1.7)

dt € | w,

where 7 is the maximum growth rate and K is the carrying capacity.

1.2.1 Density-dependent reproduction

To account for intraspecific density-dependence, the effect of adult population size is in-
cluded in the birth function. The maximum birth rate is multiplied by the probability of

mating, II, which we write as a rectangular hyperbolic function (Boukal and Berec, 2002):

H(Za> = (1.8)

where c, referred to as the “Allee effect constant”, is the density at which the probability of
mating is 1/2. The magnitude of this parameter is a measure of the intensity of the Allee
effect.

The mating success function (1.8) can be inferred from the probability for a female to

encounter at least one mate during the reproductive period, assuming that the area searched

23



————————————— mortality = >

= = birth —> juveniles |= = recruitment —) adults = = mortality —>

+W . +(W a v j)
resources
Figure 1-1: Life cycle of the 2-stage predator population. Juveniles and adults have an

average weight of w; and wy,, respectively. Generation of new biomass through birth and
recruitment is taken out of the resource.
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Figure 1-2: Growth rate versus population size in a single-stage population with density-
dependent mating success (¢ > 0, black curves) or constant mating success (¢ = 0, gray
curves) and linear mortality. a) population growth rate, b) per capita growth rate. Negative
feedbacks that would slow down growth at high density are not taken into account.
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by females, A, is an exponentially distributed random variable (Dennis, 1989). Following
Dennis (1989), we write the probability of encountering no mates as e~™"4%2_where p is

the ratio of males to females and m is a constant with units of m-kg~!.

Define S = mpA, with probability density function f(S). Assuming that a single
encounter is sufficient for the full reproductive potential to be realized and that p is constant,
the probability of successful mating is obtained by integrating the probability of meeting at

least one mate over all possible values of S:

i / 5% £(S)dS (1.9)

0

The integral in (1.9) is the Laplace transform of f(.S); it corresponds to the probability of

not mating. If the probability density function of S is an exponential distribution,

2 1 —-S/<S>
= —c¢ 1
f(S) <S>€ (1.10)

where <S> is the mean value for the effective search area. Substituting (1.10) into (1.9)
yields the function (1.8), with c =<S>"1.

An alternative derivation of (1.8) can be obtained by considering “a 1 : 1 sex ratio and
a monogamous mating system in which females compete for males” (Boukal and Berec,
2002); in that case the constant is inversely proportional to A, which is assumed to be the
same for all individuals (McCarthy, 1997). The density-dependent effect on per capita and

population growth rates is illustrated in Figure 1-2.

1.2.2 Full model and adimensionalization

For the dependence of the birth and recruitment rates on resource availability, a Holling
Type II functional form is assumed. While this function is formally derived from consider-
ations of prey handling time and predator attack rate, it is used here in a looser interpretation

to describe variations in biomass production rate, from linear increase at low prey density
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to saturation at high prey density. Using the mating probability described above, we write

P Z
B:b a
P+PhZa+C
and
P
Q=9prF,

where b and ¢ are maximum rates, and P, is the half-saturation prey density. It is implied
that the maximum recruitment rate, g, is a function of the ratio of weights w,/w;: the larger
the ratio, the more time must be spent in the juvenile stage in order to gain enough weight
to become an adult.

The ecosystem dynamics are given by the following three coupled differential equa-

tions:

dia _ %quPth_d“Z“ (1.12)
% = rP(l—%)
_%[Z_ibpfphZ“H+(%_l> quPhZJ} A

The structured predator-prey model is similar in some ways to the one proposed by
Wang and Chen (1997) when there are no time delays (equation 3.1 in their paper). These
authors also consider a two-stage structure for the predator, and assume that resource de-
pletion is proportional to the rate at which juveniles are generated. Their model, however,
does not include an Allee effect, not does it take into account uptake of resources by the
juvenile class (included here in the recruitment term).

In (1.11-1.13), the Allee effect term appears in the equation for the prey; the num-
ber of new juveniles depends on the mating success, hence so does the amount of re-

sources required to produce this new biomass. Previous models have included the density-

26



dependence only in the predator equation (Bazykin, 1998; Zhou et al., 2005); these are
discussed in Section 1.4.3. Omitting the mating probability (IT) in the prey equation (1.13),
however, implies that there is an unidentified sink for resources, a fraction of which leave
the ecosystem without going through the predator population. This is different from the
fraction 1 — € of resources that are ingested but not converted to juvenile biomass (these
resources leave the ecosystem as a result of predator respiration or excretion).

The system can be adimensionalized to facilitate the analysis. Prey biomass is scaled by
Py, juvenile and adult predator biomass are respectively scaled by er P, /g and er P,w, /bw;;
time is scaled by 7~ '. Lower-case letters indicate scaled variables. Dimensionless parame-

ters are introduced:

n=we,/w; B=blr 6=q/r d=d/r x=K/P,

as well as A, which is simply the Allee effect constant ¢ redefined. After substituting the

expression for I1, the non-dimensional system of equations is

dz; P 2 .

= —— L — 2| —0;z; 1.14
dr Pl [:a+)\ . o ( )
dz, P

— Zl—(saza 1.15
dr ﬂp—+—1 % 150
dp P p 2

=5 | s e et u = 1).2: 1.16
dr p( x> p+1 [z+n T DA i

The dynamics of this system are analyzed next. Stability of the fixed points will be
examined in parameter space, focusing on the Allee effect parameter, \, the birth and re-

cruitment parameters, J and , and what we refer to as the “enrichment parameter™, y.

1.3 Asymptotic dynamics

The 3-compartment model has three fixed points: trivial extinction (p* = z; = 2 = 0),

extinction of the predator (p* = x, 2; = z; = 0), and coexistence. The first is always
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Figure 1-3: Solutions to the equation for the coexistence equilibrium, in the complex plane;
a) juvenile predator density, b) adult predator density, c) prey density. Solutions labeled 1
and 2 are real and positive; 3 and 4 are complex conjugates; 5 has both positive and negative
real parts. Parametersare 3= 3,0 =1,0; =0.15,0,=0.1,x =05,n=2, A= L.
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Figure 1-4: Regions of stability in the stage-structured predator-prey model, in function of
the birth parameter () and the recruitment parameter (¢). Other parameters as in Figure
1-3. Thick lines indicate bifurcations.
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unstable, while the second is always stable for A > 0, a well-known consequence of the
Allee effect.

The coexistence equilibria and their stability are examined numerically; details of the
calculations are presented in Appendix 1.7.1. Equilibrium values are shown in Figure 1-3
for specific values of the model parameters. The system has five coexistence equilibria;
at most two are real and positive, one is strictly negative, and the others come in pairs of
complex conjugate. Solutions that are negative or imaginary are not biologically possible
and will not be considered further. Stability depends on the parameters. We find that of the
two possible coexistence equilibria, only the one corresponding to higher predator biomass
can be stable; thus there can be a single coexistence attractor. Transitions from stability to

instability are examined next.

1.3.1 Stability boundaries

The region of stable coexistence is shown in Figure 1-4, when all parameters are fixed but
3 and 6. There are minimum values of the birth parameter and the recruitment parameter
below which coexistence is not possible, and above which it is asymptotically stable. As
these parameters are increased, the coexistence fixed point loses its stability and a stable
limit cycle is created instead, thus allowing for oscillatory asymptotic dynamics.

Because of the structure in the predator population, stability of the coexistence equilib-
rium is not highly sensitive to variations in 3 or # when they are not varied simultaneously.
Multiple stable equilibria (Figure 1-4) are a consequence of the Allee effect; for some
parameter values, initial conditions determine whether the system will reach asymptotic
coexistence or extinction of the predator.

The various dynamical regimes are illustrated in Figure 1-5; asymptotic solutions are
shown together with example of trajectories in phase space. For small values of (3 and 6,
the extinction equilibrium is globally stable; there are no real and positive coexistence equi-
libria. All initial conditions lead to extinction of the predator, while the prey density settles

at the carrying capacity (Figure 1-5a). When the parameters are increased, two equilib-
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Figure 1-5: Phase portraits illustrating the dynamical regimes in the stage-structured
predator-prey model; star symbol indicates steady state. a) # = 6 = 1, all initial con-
ditions lead to extinction of the predator (there is no possible coexistence equilibrium). b)
# = 6 = 2.5, the system reaches one of two possible equilibria, stable coexistence or
extinction of the predator. ¢) § = 6 = 10, the system either exhibits a limit cycle, or
extinction of the predator occurs. d) 7 = # = 30, all initial conditions lead to extinction
of the predator after transient oscillations (both coexistence equilibria are unstable). Other

parameters as in Figure 1-3.
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ria appear as the result of a saddle-node bifurcation; one of them, the one associated with
the highest predator biomass, is stable. Figure 1-5b shows two steady-states, one corre-
sponding to stable coexistence and the other to extinction of the predator. The coexistence
attractor becomes unstable when the values of 3 and 6 are large. The transition from sta-
bility to instability occurs via a supercritical Hopf bifurcation; oscillatory dynamics appear
as the system is attracted to a stable limit cycle, shown in Figure 1-5c. When the param-
eters are further increased, the stable oscillator disappears and the extinction equilibrium
becomes globally stable again. This results from a homoclinic bifurcation: the limit cycle
merges with the low-density coexistence equilibrium and vanishes; all initial conditions
then lead to extinction of the prey, as illustrated in Figure 1-5d. For most initial conditions,
large transient oscillations are seen before the extinction equilibrium is reached. Unlike
in the slow birth and recruitment scenario (Figure 1-5a), the system has two coexistence

equilibria, but they are not stable.

1.3.2 Imposing structure in the population

Can the structured model be simplified by assuming that the proportion of adults and juve-
niles in the population is constant? In (1.14-1.16), the ratio of juvenile to adult biomass,

R = z;/2,, evolves according to

OR 162] zjaza
— B el 2
or 2,07 2. OT
4 20 P Za N
- 70 - R e — 0;) R :
ﬁp—{—lR p+1(za+/\ R)+(() ;)R (1.17)

In steady-state, the ratio is

9 1 0 %% 8F &
R =~ — (8~ )T iﬂ—ﬂ@—m’i) +—( | ) (1.18)

20p 20 206p B \za+ A
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Figure 1-6: Left: time series of adult biomass. Sustained oscillations in the 3-compartment
model (gray curve) disappear when the population structure is assumed to be fixed (black
curve, from equations 1.19-1.20). Parameters are 8 = 10,60 = 2, n = 2, x = 0.8, 4; = 0.3,
d, = A = 1. Right: the corresponding trajectories in phase plane, showing a limit cycle
and an attractor.

By substituting this in equations (1.15-1.16), we can derive an equivalent standard predator-

prey model, in which the population structure is fixed:

dz, p

= [0——R"z, — 0424 1.19
dr b o ol ' ( )
dp P P o
— = 1—-=] - 2 n—1)R*z, 1.20
dr p( X) p+1La+)\+(U ) (L20)

The coexistence equilibria are the same as in the full, structured model; however the sta-
bility properties are different, as shown in Figure 1-6. Parameters that lead to stable os-
cillatory behavior in the structure model lead to a stable equilibrium in the constant ratio
version (1.19-1.20). This indicates that imposing structure in the population affects the
predator-prey dynamics. A different approach for formulating a two-dimensional model is

examined in the next section.
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1.4 One-stage limit

Most predator-prey models do not distinguish between the different stages of predator de-
velopment (but see e.g. Persson et al., 1998; de Roos et al., 2003), and to investigate the
dynamical consequences of the Allee effect it is useful to formulate an unstructured version
of the model which can be directly compared to popular models of interacting species. In
this section, the population structure is “deconstructed” by projecting the predator equa-

tions onto a single-stage population model.

Let’s assume that juvenile and adult organisms differ only by their body mass, ignoring
all other characteristics such as the ability to reproduce or to capture prey. The matura-
tion process then implies nothing else than a weight gain, and the rate of recruitment is
inversely proportional to the weight difference between stages. By assuming that juveniles
and adults have the same weight, we then effectively remove all information on the popu-

lation structure. To investigate this, it is convenient to return to the dimensional equations

(1.11-1.13).

In the limit w,/w; = 1, recruitment occurs very rapidly, so that ¢ — oc. This leads to

quP, > d, so that the last term in (1.11) can be neglected. Then, in steady-state,
b Z2
Zi=-—=2 1.21
=T (1.21)
Substituting in (1.12) and (1.13) yields
dP P b P Z:
— = rP(l1—-——=|—- " 1.22
dt : ( K) €P+ Py Zg+c Whes)
dz, P Z2
= 0 2 —dZz, 1.23
dt P+ Ph Za +c ( )

This system of equations is analogous to (1.1-1.2), with the function G(P) replaced by

b P Zq

GIP.Z,)= -
( ) eEP+PyZ;+c¢

(1.24)
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Table 1.1: Equilibrium densities in the 2-stage model and the equivalent standard (unstruc-
tured) model. Parameters: w; = w, = 1,6 =0.5,0=2,d =01, r=1, K = 1.5, B, =3,
¢ = 1. The coexistence equilibrium is stable for all values of q.

structured model standard pred/prey model
g=12 = 20 q = 200
P* 0.88 0.58 0.54 0.53
zZ; 0.75 0.12 0.01 .
zZ; 1.71 1.93 1.96 1.96

that is, the predation function is multiplied by the probability of mating. Note that the
probability function appears in the equation for the prey as well as in the equation for the
predator. In this case G( P, Z,) is interpreted as production of biomass through reproduction
(adults are giving birth to new adults), and the newly generated biomass is taken out of the
resource.

Numerical simulations confirm the agreement between the stage-structured model (1.11-
1.13) with w, = w;, and the equivalent standard predator-prey model (1.22-1.23), when the
recruitment rate is large (Table 1.1). The equilibrium predator biomass (juvenile + adults)
1s underestimated in the unstructured model.

The system (1.22-1.23) is asimensionalized as in Section 5.4.1.2. Dropping the sub-

scripts, we get

dp p p 2

= A e 1.28
dr p( x) p+1lz+ A ( )
dz p 22

— = [f— — 4z 1.26
dt Bp—i—l:—i—)\ ( )

I will refer to this system of equations as the “modified Rosenzweig-MacArthur model™;
the standard version of the model is retrieved when A = 0, i.e. when density-dependence
of the mating success is suppressed.

In addition to the trivial equilibrium and predator extinction equilibrium, the system
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Figure 1-7: Basin of attraction for the coexistence equilibrium, for different values of the
enrichment parameter; from top to bottom: y = 0.45, y = 0.8, y = 1.5. Thick lines show
the saddle’s manifolds; black dots indicate attractors; half-filled circles, saddle points; an
empty circle, a repellor. Thin line in bottom plot shows a trajectory with initial condition
near the unstable equilibrium, being attracted to the limit cycle. All initial conditions within
the area delimited by the stable manifold lead to coexistence. Other parameters are [ =
e L e )
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